Perspective

As More EVs Hit The Road, Blackouts Become Likely

: Can electrical distribution networks provide the additional load?


 

The number of electric vehicles (EVs) on the road worldwide is expected to grow to 125 million by 2030, up from four million at the end of 2018. While it took 60 months to reach the one million mark in annual sales in 2015, going from three million to four million took just six months last year.  With several large countries proposing bans on sales of fossil fuel-powered vehicles, Chinese low-cost EVs headed to the West in the near future, and several established automakers switching their focus to all-electric cars and hybrids, it’s clear the trend toward EV ownership will accelerate even more in the coming years.

That means more and more EVs in urban and suburban neighborhoods worldwide could be plugging in daily to recharge. Most electrical distribution networks are simply not ready to provide the additional load — especially during peak evening hours when many EV owners are likely to plug in to recharge their cars.

The faster smart charging becomes standardized and mandated for all EV charge-points, the better networks will be able to manage the crunch of significant EV adoption.

Currently, drivers in the United States log some three trillion miles annually in their automobiles. While currently less than two percent of the vehicles are electric, what happens when that number increases? One study estimated that if all the cars in Texas today were EVs, the state might need as much as 30 percent more power; California would need 50 percent more. Nationwide, we calculate that the conversion of all internal combustion engines to electric vehicles could add as much as 45 percent to electricity demand.

Europe first

Admittedly, the US Energy Information Administration estimates seven out of 10 cars will still have internal combustion engines by 2050. Even so, the grid will no doubt feel increasing pressures if sales of electric vehicles accelerate as predicted.


To read the rest of this article, click here.